

Pyramid Optical Gains tracking using a Convolutive Model

Olivier Fauvarque^b, Vincent Chambouleyron^{a,b}, Pierre Janin-Potiron^a, Yoann Brûlé^b, Carlos Correia^b, Jean-François Sauvage^{a,b}, Benoît Neichel^b & Thierry Fusco^{a,b}

Aix⁺Marseille

ONERA

THE FRENCH AEROSPACE LAI

université

^a ONERA The French Aerospace Laboratory, ^b Aix Marseille Univ, CNRS, CNES, LAM

Pyramid wavefront sensor

Input

 ϕ

Convolutive model

Wavefront sensing with a Pyramid in presence of residual phases

Optical Gains computation

OPTICAL GAINS DEFINITION

The Optical Gains is a transfert matrix that encodes the change between the sensing regime and the calibration regime

$$iMat_{sensing} = iMat_{calib}.G_{opt}$$

Approximation - the Optical Gains is a diagonal matrix

Accuracy of the model: comparaison to End-2-End simulation The accuracy of the Optical Gains prediction by the convolutive model was proven by End-2-End simulations. Not accurate without modulation Limitations Slight difference for low-order modes Convolutive Model 50 100 150 200 250 300 350 400 50 100 150 200 250 300 350 400 0.7 KL modes 150 200 250 300 350 Next Steps: Tests on LOOPS testbed and on Sky (Keck Observatory) Robust method to get the structure function (from telemetry?)

References

1 - Ragazzoni - Pupil plane wavefront sensing with an oscillating prism - 1996

2 - Fauvaraue et. al - Kernel formalism applied to Fourier based Wave Front Sensing in presence of residual phases - 2019 3 - Deo et. al - A modal approach to optical gain compensation for the pyramid wavefront sensor - 2018