Fourier-based WaveFront Sensing at LAM A quick overview

Olivier Fauvarque on behalf of the LAM's Pyramid Team

LESIA - HRAA seminar - 20th March 2019

Context: Adaptive Optics for ELTs

What is a Fourier-based WFS ?

Coherent shaping: Fourier Filtering Mask on the focal plane

Incoherent shaping: Modulation Oscillating tip/tilt mirror + Synchronized detector

Foucault (1858) Knife-edge → Quality test for mirrors

Zernike (1930s) Phase contrast method \rightarrow Zernike WFS

> Lyot (1931) Lyot's pupil in the the stage of its coronagraph

Ragazzoni (1996) "Smart" all-in-one Knife edge → Pyramid WFS

Pyramid Wave Front Sensor

Image plane

Incident phase

Field in focal plane

Intensity

Pyramid Wave Front Sensor

- Numerical processing performed on intensities
- Incoherent recombination of phase information !
- Physically: approximately $\partial_x \phi \& \partial_y \phi$

Pyramid WFSensor Class

Number of faces

Weighting function of the modulation (and Extended object)

The WOLF ANR Wave-front sensors for adaptive Optics on Extremely Large telescope using Fourier filtering

High contrast Imaging

LGS WFS

Sensing with elongated spot ?

NGS WFS

Sensitivity and ultimate accuracy

- Collaborators !
 LAM LESIA INAF Durham
- Theoretical Model
- Testbeds
- Professional Telescopes
 CANARY + Keck

Part 1: Experimental results The LOOPS Bench Playing with the SLM Closing the loop

Part 2: Latest theoretical developments Tackling the non-linearity

The LOOPS bench

K. El Hadi, C. Bond, Vincent Chambouleyron, Lauren Schatz, Pierre Janin-Potiron

The magical Spatial Light Modulator

Chromatic, Polarized light but... extremely flexible !

Playing with the SLM ! Credit: Lauren Schatz

Exploring the Pyramid WFS class !

 Pierre Janin-Potiron et al.
 Adaptive optics with Fourier-based wavefront sensors:

 characterization and closed-loop performances on the LOOPS testbed.
 JATIS March 2019

Pierre Janin-Potiron Lauren Schatz Vincent Chambouleyron

4-sided PWFS 3-sided PWFS Axicon WFS Flattened WFS Zernike WFS

Closing the loop with a... **3-Sided Modulated Pyramid !** Lauren Schatz

Full frame but also ... slopes maps for only 3 pupil images !

$$S_{x} = \frac{I_{2}\left(\frac{\sqrt{3}}{2}\right) - I_{3}\left(\frac{\sqrt{3}}{2}\right)}{I_{1} + I_{2} + I_{3}}$$
$$S_{y} = \frac{I_{1} - I_{2}\left(\frac{1}{2}\right) - I_{3}\left(\frac{1}{2}\right)}{I_{1} + I_{2} + I_{3}}$$

Closing the loop... 3 versus 4-sided Pyramids

Pierre Janin-Potiron, Lauren Schatz

LOOPS testbed... Perspectives

Rigorous comparison of Fourier-based WFSs:

- Low Flux behavior
- Able to bootstrap ?
- Final Strehl ratio ?
- Shape of the residual PSD ?
- What are the useful pixels ?
- Full frame vs Slopes maps ?
- Using the modulation to study WFSensing with extended objects
- \rightarrow How do we choose the optimal FbWFS depending on the AO context ?

Latest theoretical developments

Tackling the **non-linearity**

O. Fauvarque, V. Chambouleyron

What is a Wave Front Sensor ?

Information: Phase Information vector: Photon Flux

WaveFront Sensor = Converting ϕ -fluctuations into I-fluctuations...

...without ambiguity:

Bijection between: Phase & intensity

Reconstruction of the phase

 \leftrightarrow Inverting $I(\phi)$

Intensity on the detector

Taylor's development of $I(\phi)$ regarding to ϕ

$$e^{\imath\phi}=1+\imath\phi-rac{\phi^2}{2}+...$$

$$I(\phi) = I_{\text{constant}} + I_{\text{linear}}(\phi) + I_{\text{quadratic}}(\phi) + I_{\text{cubic}}(\phi) + \dots$$

WFS's output ? WFS(ϕ) := $I(\phi) - I_{\text{constant}}$ = $I_{\text{linear}}(\phi) + \text{Non-linearities}(\phi)$

Non-linearities \rightarrow Quadratic + Cubic + Power 4 + etc.

Inverting WFS(ϕ) is not easy at all... unless ...

Non-linearities << /_{linear}

Phase reconstructor !

• Calibration matrix $M = I_{\text{linear}}(\text{Phase Basis})$ Pseudo-inverse $\mathbf{M}^{\dagger} = ({}^{t}\mathbf{M}\mathbf{M})^{-1} {}^{t}\mathbf{M}$

OK... for small phases BUT... Non-linearities badly affect the reconstruction for higher phases... (Bootstrap, strong residual phases, etc.)

How could we handle the non-linearities ?

1. An **optical** trick: The **Conjugated Masks** method

Another decomposition

$$= 1_{\text{constant}} + l_{\text{quadratic}} + \dots$$

 $I(\phi) = I_{\text{odd}}(\phi) + I_{\text{even}}(\phi)$

$$\begin{array}{l|l} \bullet & I_{\text{even}} = I_{\text{constant}} + I_{\text{quadratic}} + \dots \\ & I_{\text{even}} > 0 \\ & I_{\text{even}}(-\phi) = I_{\text{even}}(\phi) \\ & \text{Non-bijective} \dots \end{array}$$

$$\begin{array}{l} \bullet & I_{\text{odd}} = I_{\text{linear}} + I_{\text{cubic}} + \dots \\ & I_{\text{odd}}(-\phi) = -I_{\text{odd}}(\phi) \\ & \text{Bijective } \end{array}$$

Would it be possible to kill the even term ?

The Conjugated Masks method

→ Quadratic, Power 4, etc. **BYE BYE** ! $WFS(\phi) = I_{linear}(\phi) + I_{cubic}(\phi) + I_5(\phi) + ...$ WFS's linearity \nearrow

2. A signal processing approach: Non-linearity seen as **noise**

 $WFS(\phi) = I_{linear}(\phi) + Noise_{non-linear}(\phi)$

Adapting the reconstructor to the sensing context !!

Maximum likelihood

$$\mathbf{M}^{\dagger} = ({}^{t}\mathbf{M}\mathbf{C}_{\mathsf{nl}}^{-1}\mathbf{M})^{-1} {}^{t}\mathbf{M}\mathbf{C}_{\mathsf{nl}}^{-1}$$

where C_{nl} is the non-linearity noise covariance matrix !

Tricky calculation... which requires strong assumptions but...

Analytical expression of $C_{nl}(\mathbf{m}, \mathbf{w}, \mathbf{B}_{\phi})$

Spatial phase covariance matrix: ${\sf B}_{\phi}({\sf r})=<\phi({\sf r'})\phi^*({\sf r'}+{\sf r})>$

On going work... First results in June at AO4ELT conference

3. An algorithmic approach:

Why "Linear" ? Because \mathbf{M}^{\dagger} is constant regarding to k.

Non-linear iterative algorithm

"Non-linearity will affect the linear behavior of the sensor."

ightarrow Adapting the reconstructor to the phase-to-be measured

which is the phase-to-be-measured...

A loop in the loop !

Could we find a **additional signal** which 1) depends on ϕ_k 2) allows to adjust the reconstructor ?

What could be really useful: **WFS'**(ϕ_k) \rightarrow Linear behavior (or Calibration matrix) around ϕ_k

The reason why knowing **WFS'**(ϕ_k) is useful.

Next step:

Approximating the Modified Linear Behavior thanks to - the linear behavior around 0 &

- the linear behavior around ϕ_k

It sounds tricky but actually, it is not a big deal...

A question remains...

What is the **additional signal** allowing to know **WFS**'(ϕ_k)?

We need help from theory...

Kernel formalism applied to Fourier based Wave Front Sensing in presence of residual phases

```
OLIVIER FAUVARQUE, ^{1,2,*} PIERRE JANIN-POTIRON, ^{2,3} CARLOS CORREIA, ^2 YOANN BRÜLÉ, ^2, BENOIT NEICHEL, ^2 VINCENT CHAMBOULEYRON, ^2 JEAN-FRANCOIS SAUVAGE, ^{2,3} AND THIERRY FUSCO ^{2,3}
```

Sensitivity of FbWFSs depending on (m, w, Operative phase)

Sensitivity \sim WFS' Operating phase $\sim \phi_k$

• Major result: $(\mathbf{m}, \mathbf{w}, \phi_k) \rightarrow (\mathbf{m}, \omega(\mathbf{w}, \phi_k))$

Conclusion: To know **WFS'**(ϕ_k) we need the "effective modulation" around ϕ_k

Tackling the non-linearity... conclusions

Conjugated masks

Non-linearity noise

 $WFS = I_{linear} + Noise_{non-linear}$

A Loop in the Loop

Two outputs: Pupil & Focal

Tackling the non-linearity... conclusions

Conjugated masks

Non-linearity noise

 $\mathsf{WFS} = \mathit{I}_{\mathsf{linear}} + \mathsf{Noise}_{\mathsf{non-linear}}$

A Loop in the Loop

Two outputs: Pupil & Focal

An application: Optical Gain Tracking

Thank you for your attention

The WOLF ANR Wave-front sensors for adaptive Optics on Extremely Large telescope using Fourier filtering

APPENDIX

A new WFS coming from the coronagraph world !

O. Fauvarque, V. Hutterer, **Y. Brûlé** et al. derived from the 4Q-coronagraph

The *i*Quad sensor: a new Fourier-based WFS Talk (or poster) at AO4ELT conference

Closing the loop...without using interaction matrix !

Victoria Hutterer (& Austrian AO team at Linz) Pierre Janin-Potiron

"Model-based reconstructors"

4-sided modulated pyramid + Slopes maps

The theory says that: They are not far from Shack-Hartmann signal !

 \rightarrow Using dedicated algorithms to reconstruct phase.

CuReD & P-CuReD !

Tackling the non-linearity... conclusions

Conjugated masks

- Optical trick
- + Symmetry=Elegance
- + Bijectivity 🗡
- + Linearity range ≯
- From 1 to 2 paths
- ReadOut Noise \times 2

Non-linearity noise

- $\mathsf{WFS} = \textit{I}_{\mathsf{linear}} + \mathsf{Noise}_{\mathsf{non-linear}}$
 - Software approach
 - + 1 path only
 - + Non-invasive method
 - \pm Statistical approach
 - + Telemetry
 - Computing cost: C_{nl}
 - Strong assumptions Will it work ?

A Loop in the Loop

- AO loop = algorithm
- Two outputs: Pupil & Focal
- + Loop update at each step
- + Extremely robust NCPA, Res. phases
- Need to steal photons Trade-off...