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We introduce in this paper a general formalism for Fourier-based wave front sensing. To do so, we consider the
filtering mask as a free parameter. Such an approach allows us to unify sensors like the pyramid wave front sensor
(PWFS) and the Zernike wave front sensor (ZWFS). In particular, we take the opportunity to generalize these two
sensors in terms of sensors’ class, where optical quantities such as the apex angle for the PWFS or the depth of the
Zernike mask for the ZWFS become free parameters. In order to compare all the generated sensors of these two classes
thanks to common performance criteria, we first define a general phase-linear quantity that we call meta-intensity.
Analytical developments allow us to then split the perfectly phase-linear behavior of a WFS from the nonlinear con-
tributions, making robust and analytic definitions of the sensitivity and the linearity range possible. Moreover, we
define a new quantity called the SD factor, which characterizes the trade-off between these two antagonistic quantities.
These developments are generalized for a modulation device and polychromatic light. A nonexhaustive study is finally
conducted on the two classes, allowing us to retrieve the usual results and also make explicit the influence of the optical
parameters introduced above. © 2016 Optical Society of America
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1. INTRODUCTION

By placing amplitude or phase masks in a focal plane, it is possible
to filter the light from one pupil plane to another. Those masks
are able, in particular, to transform incoming phase fluctuations
into intensity variations on a detector.

Such optical designs are thus particularly relevant in the context
of wave front sensing, especially for the adaptive optics (AO).
Moreover, Fourier-based wave front sensors (WFSs) have many ad-
vantages compared to other WFSs, such as the Shack–Hartmann,
in terms of, for instance, noise propagation or sampling flexibility.

The historical example of those Fourier-based WFSs, dating
from 1858, is the famous Foucault’s knife. Ragazzoni generalized
this physical concept with the pyramid WFS [1], which consists
of a 4-face pyramidal mask in the focal plane. Variations of this
concept regularly appear in the literature and define new WFSs:
Akondi et al. [2] and Vohnsen et al. [3] tested new pyramidal
masks by changing the number of the faces of the pyramid.
We recently proposed the flattened pyramid WFS [4], which in-
troduces a new way to use the pyramid mask by reducing its
apex angle.

Using another physical concept based on the phase contrast
method, Zernike introduced the Zernike WFS [5], where a
Fourier mask, completely transparent, has a circular depression
in its midst, allowing one to create interference between the spa-
tial frequencies of the incoming phase.

The essential purpose of this paper is to merge all these
Fourier-based WFSs under the same mathematical formalism
in order to build robust and relevant criteria allowing researchers
to compare their performance in the context of AO wave front
sensing. Such an approach has been described, for instance, in
the context of phase masks in astronomy regarding interferometry
and coronagraphy (see [6]).

In the first section of this paper, we will present an original
interpretation of the Fourier filtering technique thanks to the
focal plane tessellation formalism. Such an approach will allow
us to describe all the masks involved in AO wave front sensing
in a unique mathematical framework. We will then define a uni-
fied post-processing in order to create, from the detector output
signal, a quantity called the meta-intensity, which will be linear
with the phase. Thanks to an analytical development of the meta-
intensity for any Fourier mask, we will, in the third part, define
rigorously the sensitivity and the linearity range depending only
on the choice of the Fourier mask used to do wave front sensing.
Moreover, we will show why these two performance criteria are
inevitably antagonistic thanks to a third criterion, the SD factor,
which will quantify the trade-off between them. We will also give
some hints regarding the optimization of WFSs by considering
masks as free-form objects. We will then show, in the fourth sec-
tion, how it is possible to generalize these results in the context of
a modulation in the pupil plane upstream to the filtering mask. In
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the fifth and sixth sections, we will apply all these mathematical
developments to the PWFS and the ZWFS. If, in the four first
sections, the light will be considered as monochromatic, the last
section will be dedicated to the case of polychromatic light. In
particular, we will show how our formalism allows us to define
the chromaticity of a sensor.

2. WAVE FRONT SENSING AND FOURIER
FILTERING

A. Optical System

We consider the optical system shown in Fig. 1. The first plane
contains the pupil and a focusing device corresponding to a per-
fect telescope. The associated spatial variables of this plane are xp
and yp; the p index refers to the “pupil plane.” The second plane
contains the mask and an imaging lens. The spatial variables are
f x and f y; this plane corresponds to the space of spatial frequen-
cies. The detector is placed in the third plane. This one is con-
jugated with the first pupil plane. The associated spatial variables
are xd and yd for “detector.”

The incoming electromagnetic (EM) field can be written as

ψp�xp; yp; λ� �
ffiffiffiffiffiffiffiffiffi
n�λ�

p
IP�xp; yp� exp

�
2ıπ
λ

Δ�xp; yp�
�
;

where λ is the wavelength of the incoming light, n�λ� is the number
of photons by unit area at the wavelength λ, and IP is the indicator
function of the pupil. Δ is the optical path difference created by
atmospheric turbulence or any other sources of perturbation.

The mask has for its transparency function m�f x ; f y; λ�.
As a complex quantity, it can be decomposed into two terms:

m�f x; f y; λ� � a�f x; f y; λ� exp
�
2ıπ
λ

OS�f x ; f y; λ�
�
:

The function a codes the amplitude filtering. Since the masks are
passive, a ∈ �0; 1�. The phase term is directly coded by the “optical
shape” of the mask. This quantity “OS” depends on the optical
indexes (and consequently, on the wavelength of the refractive
material) and on the geometric shape of the mask. Via the
Fresnel optical formalism, it is possible to write the EM field in
the detector plan as

ψd �xd ;yd ;λ�∝
ZZ

dxpdyp
f 2 ψp�xp −xd ;yp −yd ;λ�;

ZZ
df xdf y

λ2
m�f x ;f y;λ�exp

�
−
2ıπ
f λ

�xpf x� ypf y �
�
:

(1)

For the sake of clarity, we will consider in the first sections that
the incoming light is monochromatic. The wavelength will thus
be set at λ0. Section 8 will be dedicated to the polychromatic light
case. The incoming EM field and the mask have the following
expressions:

ψ p�xd ; yd � �
ffiffiffi
n

p
IP�xd ; yd � exp�ıϕ�xd ; yd ��;

m�f x ; f y� � a�f x ; f y� exp
�
2ıπ
λ0

OS�f x; f y�
�
; (2)

where ϕ � 2πΔ∕λ0 is the perturbed phase at the considered
wavelength. The monochromatic assumption and the associated
notations allow us to simplify Eq. (1) into the following form:

ψd � ψp⋆F �m�; (3)

where F is the 2D Fourier transform (2DFT) defined in
Appendix A. The interesting point about Eq. (3) is that the con-
tributions of the pupil and the mask are clearly split: the EM field
in the detector’s plane ψd is the convolution of the incoming field
ψp with the Fourier transform of the mask F �m�.

Moreover, since the Fourier transform is a bijective applica-
tion, the quantity F �m� completely characterizes the mask. In
other words, looking at F �m� or at m itself is mathematically
equivalent. Fraunhofer’s diffraction also says that the F operator
allows us to go from a focal plane to a pupil plane. As a conse-
quence, F �m� may be seen as the propagated EM field when the
diffractive object is the mask m.

One notes that Eq. (3) is not exact. Indeed, the optical design
described above has a magnification equal to −1. This appears clearly
when no mask is inserted in the focal plane. As a consequence, the
term ψd should be replaced by its symmetric, i.e., S�ψd � where S is
the symmetric operator defined in Appendix A. However, since this
symmetric operation does not impact the wave front sensing, we will
not consider it.

The signal that is effectively obtained on the detector is the
intensity associated with the EM field in the detector’s plane ψd ,

I � jψp⋆F �m�j2: (4)

B. Considered Masks in the Context of Wave Front
Sensing

In this part, we will give a general interpretation of the effect of
Fourier filtering masks in the context of wave front sensing. The
essential objective is to code the phase by using the incoming flux.
Subsequently, the mask has to split and extract this information.
These operations are done in the focal plane that is the Fourier
space associated with the pupil plane. The area close to the optical
axis contains the low spatial frequencies of the incoming EM field,
whereas the remote zones contain the high spatial frequencies.

These physical results have been widely exploited to remove
some spatial frequencies from images. We can, for example, men-
tion the Abbe experiment and the Schlieren photography intro-
duced by Toepler [7]. In our case, the use of opaque masks is not
relevant since the reference sources are often faint. We thereforeFig. 1. Schematic view (in 1D) of a Fourier filtering optical system.
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consider only masks having pure phase transparency functions.
Mathematically, this means that the function a in Eq. (2) equals
1 in the entire focal plane. Having said that, we will now see how
it is possible to split and then extract the spatial frequency infor-
mation thanks to a Fourier mask.

The first step is to choose a tessellation �Ωi� of the Fourier
plane. Mathematically, this means

∪iΩi � R2 and Ωi ∩ Ωj � ∅ if i ≠ j:

The index i goes in a finite or a countable set. Each element of this
tessellation allows us to select a certain part of the spatial frequen-
cies. The second step consists of separating the spatial frequencies
contained in each elementΩi thanks to a tip and a tilt generated via
a slope (or an angle) in the optical shape of the mask. If several Ωi
have the same rejection angle, it is possible to do interference be-
tween them thanks to the local pistons. This corresponds, in terms
of optical shape, to local thickness differences. (Obviously, it is pos-
sible to add the next shapes (focus, astigmatism, etc.) by playing
with the optical shape of each Ωi, but we choose to not explore
this level of complexity in this paper.) Mathematically, every con-
sidered mask can thus be written as

m�f x ; f y� �
X
i

IΩi
�f x; f y� exp

�
2ıπ
λ0

�δi � f xαi � f yβi�
�
;

(5)

where δi codes the local piston, and �αi ; βi� the local tip/tilt
corresponding to the rejection angles. IΩi

is the indicator function
of Ωi. To summarize, it is possible to describe any kind of mask
used in the context of wave front sensing via the following set of
parameters:

fΩi ; δi ; αi ; βigi : (6)

This set will be called the tessellation parameters of the considered
mask. With this formalism, it is now possible to write the 2DFT
corresponding to the expression of the general transparency func-
tion [Eq. (5)],

F �m��xd ;yd ��
X
i

exp

�
2ıπδi
λ0

�
F �IΩi

��xd −f αi ;yd −f βi�; (7)

where f is the focal point of the imaging lens.

C. 2D Fourier Transform of Classical Tessellations

Although all the tessellations of the Fourier plan are a priori
acceptable, two of them play a significant role for the
existing WFSs.

The first one consists of splitting the plane into 4 elements
following the Cartesian coordinate system (left insert of
Fig. 2). The second one is a polar splitting of the Fourier plane.
This tessellation has a parameter ρ that codes the size of the cen-
tral circle (right insert of Fig. 2).

From these definitions, one can write the indicator functions
of each part of the tessellation and then get their 2DFTs.
We detail this indicator function for the element Ω��,

IΩ���f x ; f y� � Θ�f x�Θ�f y�;

where Θ is the Heaviside function. Hence, its 2DFT equals

F �IΩ�� ��xd ; yd � �
1

4

�
δ�xd �δ�yd � −

1

π2xd yd

�

−
ı
4

�
δ�xd �
πyd

� δ�yd �
πxd

�
: (8)

For the other parts of the Cartesian tessellation, we get

F �IΩ−� ��xd ; yd � �
1

4

�
δ�xd �δ�yd � �

1

π2xd yd

�

−
ı
4

�
δ�xd �
πyd

−
δ�yd �
πxd

�
; (9)

F �IΩ−− ��xd ; yd � �
1

4

�
δ�xd �δ�yd � −

1

π2xd yd

�

� ı
4

�
δ�xd �
πyd

� δ�yd �
πxd

�
; (10)

F �IΩ�− ��xd ; yd � �
1

4

�
δ�xd �δ�yd � �

1

π2xd yd

�

� ı
4

�
δ�xd �
πyd

−
δ�yd �
πxd

�
: (11)

For the polar tessellation, the indicator function IΩρ
�f r ; f θ�

equals Θ�ρ − f r�. Its 2DFT is

F �IΩρ
��rd ; θd � �

ρ

rd
J1�2πρrd �; (12)

where Jα are the first-kind Bessel functions.

D. Other WFSs

We mention here that other tessellations may be relevant in the
wave front sensing context, especially regarding the case of the
point diffraction interferometer introduced by Smartt and Steel
[8]. Moreover, this formalism easily extends to the optical differ-
entiation WFS introduced by Oti et al. [9] and also describes the
first stage of coronagraphic systems.

3. META-INTENSITY DEFINITIONS

In this section, we introduce the basic elements needed to con-
struct, from the intensity on the detector, a numerical quantity
called the meta-intensity and written mI , which consists of the
linear response to an incoming turbulent phase.

Fig. 2. Two classical tessellations. Cartesian splitting (left insert) and
polar splitting (right insert).
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A. Reference Phase

The phase seen by the WFS is the sum of the turbulent phase
induced by the atmosphere and the static aberrations of the wave
front sensing path. Mathematically, we can split the incoming
phase into two terms,

ϕ � ϕr � ϕt ; (13)

where ϕt is the turbulent phase, and ϕr the static reference phase.
ϕr may also be seen as the operating point of the WFS.

B. Toward the Linearity

The goal of the meta-intensity is to transform the intensity on the
detector into a quantity that will be linear with the turbulent phase
around the reference phase. Moreover, mI has also to be indepen-
dent of the flux n. Mathematically, such conditions are written as

mI�ϕt � aΦt� � mI�ϕt� � amI�Φt�
∀ ϕt ;Φt ∈ Phase space and ∀ a ∈ R.

We make use of the power series of exponential functions and the
Cauchy product laws to develop the squared module of Eq. (4) and
get an expression of the intensity depending on the successive
powers of the turbulent phase:

I�ϕ; n� � I�ϕr � ϕt ; n� � n
X∞
q�0

�−ı�q
q!

Xq
k�0

�−1�k
�
q

k

�
ϕk⋆
t ϕ

q−k⋆
t

where ϕk⋆
t ≙ �Ipeıϕrϕk

t �⋆F �m�: (14)

The complex quantity ϕk⋆
t may be considered as a kth-moment of

the turbulent phase through the mask around the static reference
phase ϕr . By looking at Eq. (14), we note that one way to make
I independent on the flux is to divide it by the spatial average
incoming flux n. This operation is easy in practice, since n is pro-
portional to the total flux on the detector. The first step of the
post-processing to build the meta-intensity is thus to normalize the
intensity by the spatial average flux n.

Regarding the linearity with respect to the phase, one can
explicitly develop Eq. (14). This is done below for q � 0 to 2:

Constant term; q � 0:

I c ≙ jIPeıϕr⋆F �m�j2: (15)

Linear term; q � 1:

I l �ϕt� ≙ 2I��IPeıϕr⋆F �m���IPeıϕrϕt⋆F �m���: (16)

Quadratic term; q � 2:

Iq�ϕt� ≙ jIPeıϕrϕt⋆F �m�j2

−R��IPeıiϕr⋆F �m���IPeıiϕrϕ2
t⋆F �m���: (17)

The only term linear with the turbulent phase ϕt is the q � 1
term, which we call the linear intensity, I l . Ideally, and in order to
maximize the linearity, one would want to minimize the other
terms, i.e., q � 0 and q ≥ 2. The constant intensity I c
(q � 0) corresponds to the normalized intensity on the detector
when the phase equals the reference phase, i.e., I�ϕr ; n�∕n.
Removing such a term can thus be done thanks to a calibration
path. With regard to the q ≥ 2 terms, they are unfortunately
impossible to remove, but we still consider that the second step

to build mI consists of this return-to-reference. Mathematically,
the meta-intensity mI is thus defined as

mI�ϕt� �
I�ϕr � ϕt ; n� − I�ϕr ; n�

n
: (18)

This definition is the easiest way to define a linear quantity for any
type of sensor. Finally, it might be relevant to mention that it
avoids a lot of other processes that can be applied to the
meta-intensities after these two fundamental first steps (normali-
zation, return-to-reference), but it is a vast topic that will be
tackled in a forthcoming paper (see [10]).

C. Linear and Effective Meta-Intensities

The previous post-processing allows us to build, in practice, the
meta-intensity from the intensity on the detector and a reference
intensity. Unfortunately, we saw that Eq. (18) is not perfectly lin-
ear with the turbulent phase, since mI still contains the quadratic
and next high-order moments of the phase. In the following, we
will distinguish the effective behavior of a WFS from its ideal one.
Equation (18) will define the effective meta-intensity, while the
restriction of the phase power series development to its first term,
i.e., to the linear intensity I l, will define the linear meta-intensity
[see Eq. (16)]. We note that this linear meta-intensity cannot be
strictly deduced from the intensity on the detector, but it can be
easily computed by numerical simulations. It corresponds to the
behavior a perfectly linear WFS would have.

As a side comment, another interpretation of the linear and
quadratic meta-intensities can be deduced from the derivatives
of the normalized intensity with respect to the amplitude phase
around the reference phase, i.e.,

I l �ϕt� �
1

n
dI�ϕr � aϕt ; n�

da

����
a�0

I q�ϕt� �
1

2n
d 2I�ϕr � aϕt ; n�

da2

����
a�0

:

This result is not surprising regarding the calculation of Eq. (14),
which is the Taylor’s development of the intensity around ϕr .

4. SENSITIVITY AND LINEARITY RANGE

In this section, we define the sensitivity and the linearity range of
a WFS regarding an incoming turbulent phase. From now, this
turbulent phase will be normalized regarding the 2-norm (i.e., the
RMS norm). ϕt is used in the light of the previous developments.

Due to the fact that the sensitivity only makes sense in the
linear regime of the WFS, we will use the linear meta-intensity
I l to define it. On the other hand, the linearity range will be cal-
culated thanks to the study of the variation of the distance be-
tween the effective and the linear meta-intensities when the
input phase amplitude varies.

A. Sensitivity

The perfectly linear response to the normalized incoming phase
ϕt is obtained thanks to the expression of the linear intensity
[Eq. (16)] I l �ϕt�.

We choose to define as “the sensitivity regarding to ϕt” the
2-norm of this linear response:

s�ϕt� � kI l �ϕt�k2: (19)

Such a definition is in fact consistent with the method introduced
by Rigaut and Gendron [11] to estimate the noise propagation
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associated with a WFS. The Rigaut and Gendron method consists
of looking at the diagonal terms of the matrix �tMC−1B M�−1,
where M is the interaction matrix, i.e., the matrix that contains
the output meta-intensities for an input phase basis, and CB is the
noise covariance matrix. Physically, these values correspond to the
noise propagation coefficients for a detector or photon noise re-
gime, depending the nature of CB.

In the case of a diagonal and constant noise covariance matrix,
i.e., CB � σ2noise × Id , the noise propagation coefficients for the
turbulent phase ϕt , called σ2WFS�ϕt� in Rigaut and Gendron
are related to the sensitivity definition introduced above s�ϕt�
via the following equation:

σ2WFS�ϕt� � σ2noises�ϕt�−2:

B. Linearity Range

The linearity range quantifies the gap between the perfectly linear
behavior of a WFS and its effective behavior. Indeed, when the
incoming phase amplitude increases, the meta-intensity defined
in Eq. (18) differs more and more from the linear intensity
[Eq. (16)]. We call the mathematical function that quantifies this
deviation from linearity Gel for “gap between effective and linear
behaviors,” and we define it by

Gel �ϕt ; a� �
����mI�aϕt�

a
− I l �ϕt�

����
2

; (20)

where the variable a codes the amplitude of the incoming phase.
We note that ϕt is, once again, normalized regarding the RMS
norm. The black curve of Fig. 3 shows the typical evolution ofGel
when a increases. Two distinct regimes are observed: a linear
growth for the lowest amplitude and, then, a saturation regime.
In the saturation regime, the intensity on the detector does not
change anymore as the phase amplitude continues to grow. The
linear regime can be explained by looking at the analytic expres-
sion of Gel ,

mI�aϕt�
a

− I l �ϕt� �
X∞
q�2

aq−1
�−ı�q
q!

Xq
k�0

�−1�k
�
q

k

�
ϕk⋆
t ϕ

q−k⋆
t

� aIq�ϕt� � a2�…�:
The linear growth is thus directly linked to the quadratic inten-
sity; more precisely, the associated slope equals the 2-norm of I q
(see the red curve of Fig. 3):

Gel �ϕt ; a� � akI q�ϕt�k2 � a2�…�:
In others words, a small slopemeans that the effective meta-intensities
slowly differ from the linear behavior for an increasing incoming
phase amplitude; the associated linear range is thus large.

We thus choose to define the linearity range regarding the nor-
malized phase mode ϕt as the inverse of the 2-norm of the quad-
ratic term,

d �ϕt� � �kIq�ϕt�k2�−1; (21)

where the letter d refers to the word “dynamic,” which is a syn-
onym of “linearity range.”

Such a definition allows us to calculate the linear range in an ana-
lytical way thanks to the expression of the quadratic term [Eq. (17)].

C. SD Factor

The previous developments allow us to give an explanation about
the fact that the sensitivity and the linearity range are antagonistic
quantities. By looking at their product, which we call the SD factor,

s�ϕt�d �ϕt� � �kI l �ϕt�k2��kI q�ϕt�k2�−1; (22)

we can see that such a quantity corresponds to the ratio between the
norms of the first and the second derivatives of the intensity regard-
ing the turbulent phase. One can easily understand that it is diffi-
cult to increase the numerator while decreasing the denominator at
the same time. The SD factor is thus a relevant indicator of the
trade-off between the sensitivity and the linearity range.

The expressions of the linear and quadratic intensities
[Eqs. (16) and (17)] and the 2-norm definition allow us to nu-
merically optimize a WFS, i.e., its mask, by maximizing its SD
factor. For a given turbulent phase ϕt , we can thus consider a
mask depending on a scalar optical parameter that we call p.
The only constraint on this parameter is to define a mask that
is transparent, i.e., jm�f x ; f y�j � 1 (or at least a passive one:
jm�f x ; f y�j ≤ 1). As examples, the optical parameters of the tes-
sellation formalism �δ; α; β� are appropriate since they are varia-
bles for the geometrical shape of the mask. The next step just
consists of finding numerically the maximum of the function s ·
d �ϕt ; m�p�� regarding the parameter p.

Finally, one can modify the SD factor to give more or less im-
portance to the sensitivity or the linearity range by introducing a
power exponent η in it,

sηd 1∕η � �kI l �ϕt�k2�η · �kI q�ϕt�k2�−1∕η;
with η ∈ R��. For instance, η � 0.5 confers more importance to
the linearity range than to the sensitivity, whereas η � 2 repre-
sents the opposite case. The power exponent η allows one to con-
sider different requirement specifications.

5. MODULATION

The Fourier filtering may be coupled with an additional optical
stage placed in the entrance pupil plane. Such a device creates an

Fig. 3. Typical graph (�) of the gap between the effective meta-intensity
and the linear intensity depending on a, and the input phase amplitude
[Eq. (20)]. The slope of the red line equals the 2-norm of the quadratic
intensity. The input phase is the vertical coma, and the considered WFS is
the Zernike WFS.
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oscillating aberration and changes the shape and the size of the
focal spot on the Fourier mask. The detector is synchronized with
this regular oscillation in order to have one image for each aber-
ration cycle. This system, called modulation, allows us to adjust
the WFS’s performance.

Historically, such a device has been introduced by Ragazzoni
[1] in order to improve the linearity range of the classical PWFS.
Even if, to our knowledge, modulation is only used for the PWFS,
we give in this section a definition for any kind of WFSs and show
how to define a generalized sensitivity and linearity range with
such a device.

A. General Definition of Modulation

The oscillating aberration introduced by the modulation device
defines a closed path (or loop) in phase space. Mathematically,
it means that modulation may be defined in the following way:

ϕm�s� �
X∞
k�0

mk�s�Φk with ∀k mk�0� � mk�1�

w�s� with w�s� ≥ 0; w�0� � w�1�;
Z

1

0

w�s�ds � 1;

where s is the temporal variable normalized with respect to the
duration of the modulation cycle τ, i.e., s � t∕τ. The phase poly-
nomialsΦk describe a phase basis, typically the Zernike basis. The
functions mk�s� indicate the amplitudes of the phase modes used
during modulation. w�s� is the weighting function: it codes the
time spent for each modulation phase ϕm�s�.
B. Intensity on the Detector

Thanks to these definitions, it is possible to write the modulated
intensity, called Im, on the detector. In particular, this one is the
integral during a cycle of the intensity with an additional phase
corresponding to the local modulation phase,

Im�ϕ; n� �
Z

1

0

I�ϕ� ϕm�s�; n · w�s��ds:

Such an equation is linked to the fact that the modulation handles
the light as an incoherent quantity. Moreover, remembering
Eq. (13), it appears that the reference phase may be seen as a static
modulation. In the following, we will assume that the modulation
phase contains this reference phase. The generalized phase power
series of the intensity becomes

Im�ϕt ; n�
n

�
X∞
q�0

�−ı�q
q!

Xq
k�0

�−1�k
�
q

k

�Z
1

0

w�s�dsϕk⋆
t �s�ϕq−k⋆

t �s�

where ϕk⋆
t �s� � �Ipeıϕm�s�ϕk

t �⋆F �m�:

C. Modulated Meta-Intensity

The first terms of the previous equation correspond once again to
the modulated constant, linear, and quadratic terms:

Imc �
Z

1

0

jIPeıϕm�s�⋆F �m�j2w�s�ds

Iml �ϕt��
Z

1

0

2I��IPeıϕm�s�⋆F �m���IPeıϕm�s�ϕt⋆F �m���w�s�ds

Imq�ϕt��
Z

1

0

�jIPeıϕm�s�ϕt⋆F �m�j2�w�s�ds

−

Z
1

0

h
R��IPeıϕm�s�⋆F �m���IPeıϕm�s�ϕ2

t⋆F �m���
i
w�s�ds:

The method used previously to construct a phase-linear quantity
(at least in the small-phase approximation) is thus still valid. The
effective modulated meta-intensity, called mIm, will be sub-
sequently defined in the same way as Eq. (18), i.e.,

mIm�ϕt� �
Im�ϕt ; n� − Im�0; n�

n
: (23)

The definitions of the sensitivity and the dynamic stay as they
were in Eqs. (19) and (21) under the condition they must
now use the modulated linear and quadratic intensities, Iml
and Imq.

6. APPLICATION TO THE PYRAMID WFS

In this section, we apply the theoretical formalism developed
above to the pyramid WFSs. Without loss of generality, we as-
sume in the next developments that the operating phase equals
the null phase. Ragazzoni [1] introduced this sensor, which is
a generalization of Foucault’s knife. The corresponding Fourier
mask placed in the focal plane is a transparent squared pyramid.
Its apex angle is called θ. In its historical configuration, this mask
creates in the detector’s plane 4 pupil images, each containing
only one part of the spatial frequency.

A. Tessellation Formalism

The pyramidal mask allows us to illustrate the spatial frequency
separation induced by local tip/tilt OPDs. The tessellation param-
eters (i.e., Ωi:δi ; αi ; βi), associated with the transparency function
of this mask that we note as mΔ are

Ω−�:0; −θ; θ Ω��:0; θ; θ

Ω−−:0; −θ; −θ Ω�−:0; θ; −θ:

The associated 2DFT is

F �mΔ��xd ; yd � � F �IΩ�� ��xd − f θ; yd − f θ�
� F �IΩ−− ��xd � f θ; yd � f θ�
� F �IΩ−� ��xd � f θ; yd − f θ�
� F �IΩ�− ��xd − f θ; yd � f θ�: (24)

Considering the 2DFT of each quadrant Ωi [see Eqs. (8)–(11)],
we have with Eq. (24) an analytic formulation of the 2DFT of the
pyramid WFS mask. We can see in Fig. 4 the module and the
argument of this quantity [Eq. (24)]. Such quantities allows us
to determine the imaging on the detector (top right insert of
Fig. 5), since this intensity corresponds to the convolution be-
tween the entrance pupil and the 2DFT of the mask. It may
be interesting to study the different cases of this optical design
with respect to the apex angle parameter:

– The first one is when θ tends to infinity. It corresponds to
the case of a reflective pyramid that creates 4 pupil images on
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4 different detectors. This design was introduced by Wang et al.
[12]. It allows one to completely separate the 4 pupil images.
Concretely, it means the four 2DFTs are considered as indepen-
dent: there is no crosstalk between the spatial frequencies of the 4
quadrants Ωi. This hypothesis of no interference between the pu-
pils is usually done in theoretical approaches and in the usual sim-
ulation algorithms.

– The second case is the more common one. It corresponds to
an achromatic refractive pyramid. The 4 pupil images are created
on a unique detector and D∕2 ≤ f θ, where D is the diameter of
the entrance pupil and f is the focal point of the imaging lens. It
means there is no overlap between these 4 images, even if each
pupil image contains a part of the spatial frequencies of the other
quadrants due to the fact that the 2DFTs of the four Ωi do not
have a compact support. This interference between the 4 pupil
images is particularly marked in the middle area (see top right
insert and bottom inserts of Fig. 5).

– We introduced the last case in [4] with the flattened pyra-
mid WFS. The idea of this sensor is to overlap the 4 pupil images
by using a small angle: 0 < θf < D∕2. (The case θ � 0 is ob-
viously useless since it corresponds to the trivial mask.) This op-
tical configuration is shown in the top left insert of Fig. 5.

Before getting into more details on these WFSs, it would be
relevant to now consider the pyramid not as a unique and “static”
optical system, but more like a class, including an infinite number
of different pyramids. Indeed, the angle of the apex θ is one op-
tical parameter, and it is possible to envisage another ones as, for
example, the number of faces or the modulation parameters.

B. Sensitivity, Linearity Range, and SD Factor

1. Apex Angle

Figure 6 shows the sensitivity, the linearity range, and the SD
factor (red, black, and blue curves) with respect to the first 24
Zernike radial orders, i.e., the spatial frequencies, for different
apex angles. Physically, the optical parameter θ sets the overlap
rate of the pupil images. First of all, one can note that as soon
as 2f θ∕D > 1.5, the 3 curves (s, d , and s · d ) do not evolve any-
more, and this is a general behavior observed for all the configu-
rations tested in this paper. In other words, θ has an influence
only when the pupil images overlap.

Second, as mentioned in [4], Fig. 6 shows that an optical re-
combination induced by a small angle provides a better sensitivity
in high spatial frequencies, while it decreases for low frequencies.
Moreover, it is possible to choose where the sensitivity is maxi-
mum by changing the θ value. It comes as no surprise that the
linearity range has an inverse behavior: it improves for the low
frequencies and decreases at the high ones. The curve of the
SD factor is more interesting, since for small angles, this curve
stays above the classical pyramid one for all spatial frequencies.
In terms of the trade-off between the sensitivity and the linearity
range, there is thus a real gain to using small angles.

2. Modulation Radius

The pyramid WFS is usually coupled with a modulation stage.
With the formalism introduced in section 5, the classical modu-
lation used with Ragazzoni’s pyramid, i.e., a circular and uniform
tip/tilt modulation with a modulation radius equal to rm, corre-
sponds to

ϕm�s� � rm�cos�2πs�Z −1
1 � sin�2πs�Z 1

1� and w�s� � 1:

We consider here that the apex angle θ equals 3 2θf
D , and the pupil

images are thus widely separated (right insert of Fig. 5). Figure 7
shows the sensitivity, the linearity range, and the SD factor with
respect to the first 24 Zernike radial orders for different modu-
lation radii. One can observe the classical influence of the modu-
lation radius on the sensitivity and the linearity range: there is a
loss a sensitivity for the low spatial frequencies with a slope sensorFig. 4. Modulus (left) and argument (right) of the 2DFT with an apex

angle that equals 1.5D
2f , where D is the entrance pupil diameter.

Fig. 5. Intensity on the detector for a circular pupil and a flat incoming
phase. θ equals 0.1, 1, 1.5, and 3 D

2f .

Fig. 6. Sensitivity, linearity range, and SD factor of the pyramid WFS
with respect to the spatial frequencies. The apex angle equals 0.05 (�),
0.1 (�), and 3 (Δ) 2θf

D . The phase basis corresponds to the 24 first
Zernike radial orders.
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behavior on this range. The cut-off frequency is growing linearly
with the modulation radius. The linearity range is also improving
with the modulation radius. We thus observe that our definition
of the sensitivity and the linearity range allows us to get, in an
analytical way, the usual behaviors of the modulated pyramid
WFS. By looking at the SD factor, which characterizes the
trade-off sensitivity/linearity range, it appears that the gain is par-
ticularly pronounced for low spatial frequencies but tends to be
null for the highest ones.

C. Mathematical Developments Applied to Ragazonni’s
PWFS

The aim of this subsection is to apply the analytical developments
to the nonmodulated Pyramid WFS. In particular, we show how
our formalism may be linked to the classical meta-intensities used
for the PWFS, which are usually called “slope maps” [1,13].

We assume that the apex angle tends to infinity. As a conse-
quence, the 4 pupil images are completely separated and do not
interfere. Such a theoretical framework allows us to study the 4
quadrants independently. Subsequently, each pupil image has its
own intensity:

I−� � jψp⋆F �IΩ−� �j2 I�� � jψ p⋆F �IΩ���j2
I −− � jψp⋆F �IΩ−− �j2 I�− � jψp⋆F �IΩ�− �j2:

The first step consists of getting the linear and quadratic inten-
sities associated with the general definition of the meta-intensities
[see Eq. (18)]. Thanks to Eq. (16), it is possible to determine the
phase-linear dependence of the meta-intensity associated with one
of the 4 pupil images. Let us take the case of the pupil image
containing the x-positive and y-positive spatial frequencies, i.e.,
the Ω�� quadrant. The linear intensity is

I��
l �ϕt� � 2I��IP⋆CIR�IΩ�� ���IPϕt⋆CIR�IΩ�� ���:

The development of this equation gives

I��
l �ϕt� �

1

8
��I �H2

xy��IP ��Hx �Hy��IPϕt ��

−
1

8
��I �H2

xy��IPϕt ��Hx �Hy��IP ��;

where the operators I , Hx , Hy, and H2
xy are defined in

Appendix A. The linear intensities associated with the other quad-
rants are

I�−
l �ϕt� �

1

8
��I −H2

xy��IP ��Hx −Hy��IPϕt ��

−
1

8
��I −H2

xy��IPϕt ��Hx −Hy��IP ��

I −�l �ϕt� �
1

8
��I −H2

xy��IP ��−Hx �Hy��IPϕt ��

−
1

8
��I −H2

xy��IPϕt ��−Hx �Hy��IP ��

I −−l �ϕt� �
1

8
��I �H2

xy��IP ��−Hx −Hy��IPϕt ��

−
1

8
��I �H2

xy��IPϕt ��−Hx −Hy��IP ��:

These equations allow us to have an analytic expression of the
sensibility associated with the turbulent phase mode ϕt ,

s�ϕt� � kI�−
l �ϕt�k2 � kI −�l �ϕt�k2

� kI−−l �ϕt�k2 � kI��
l �ϕt�k2:

Concerning the quadratic intensities range, we choose not to
explicitly show their expressions due to the fact that they may
seem “abstruse,” but, obviously, it is possible to get them thanks
to Eq. (17). We deduce from them the linearity range:

d �ϕt� � �kI�−
q �ϕt�k2 � kI −�q �ϕt�k2

�kI −−q �ϕt�k2 � kI��
q �ϕt�k2�−1:

The general meta-intensities we introduced above [Eq. (18)] do
not correspond to the classical processing done on the intensity in
order to create a quantity linear with the incoming turbulent
phase. Indeed, it is the customary to use the slope maps Sx

and Sy. These quantities are directly calculated from the 4 inten-
sities on the detector. There are two ways to define them
(Ragazzoni [1] and Vérinaud [13]), depending on the normaliza-
tion, but we are interested here in the Vérinaud’s one:

Sx � I�� � I�− − I −� − I −−

n
; (25)

Sy � I�� − I −� � I�− − I −−

n
: (26)

One can note that this definition does not require a return-to-
reference. However, it is only valid if the reference phase is the
null phase. In that particular case, the slope maps are related
to our meta-intensities via the linear transformations:

Sx � mI�� � mI�− − mI−� − mI −−; (27)

Sy � mI�� − mI −� � mI�− − mI−−: (28)

Subsequently, it is possible to get the linear and quadratic slope
maps:

Fig. 7. Sensitivity, linearity range, and SD factor of the modulated
pyramid WFS with respect to the spatial frequencies. The modulation
radii equal 0 (Δ), 1 (�). and 3 (�) λ∕D. The apex angle equals 3 2θf

D ,
i.e., the 4 pupil images are widely separated.
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Sxl � I��
l � I�−

l − I−�l − I−−l Syl � I��
l − I−�l � I�−

l − I−−l
Sxq � I��

q � I�−
q − I−�q − I−−q Syq � I��

q − I −�q � I�−
q − I −−q :

It is thus possible to have the analytic expression of the linear slope
maps:

Sxl �ϕt� �
1

2
�I �IP �Hx �IPϕt � �H2

xy�IP �Hy �IPϕt ��

−
1

2
�I �IPϕt �Hx �IP � −H2

xy�IPϕt �Hy �IP ��

Syl �ϕt� �
1

2
�I �IP �Hy�IPϕt � �H2

xy�IP �Hx �IPϕt ��

−
1

2
�I �IPϕt �Hy �IP � −H2

xy�IPϕt �Hx �IP ��:

These results already appeared in Shatokhina et al. [14]. They
correspond to the 2D generalization of Vérinaud’s calculation
in [13] and allow us to derive the sensitivity associated with
the slope maps, which we call sS�ϕt�,

sS�ϕt� � kSxl �ϕt�k2 � kSyl �ϕt�k2:
Very fortunately, the loss of sensitivity due to the computation of
the slope maps is insignificant, and the equality sS�ϕt� � s�ϕt�
may be considered as true. This is surprising, since a part of in-
formation is lost during Eqs. (27) and (28). This remarkable fact
will be discussed in a paper dedicated to the numerical handling of
the meta-intensities (see [10], in preparation).

On the other hand, the calculation of the quadratic slopes
maps shows that they are equal to zero:

Sxq�ϕt� � 0 and Syq�ϕt� � 0:

The linear Eqs. (27) and (28) thus have a positive influence on the
linearity range without any significant loss of sensitivity! This re-
sult constitutes a strong argument in favor of the slope maps.
Unfortunately, it does not mean that the PWFS associated with
the slope maps has an infinite linearity range: if the quadratic
intensity is null, it is not the case for the next phase powers.
In other words, the linearity ranges associated with the slope maps

are determined by the cubic intensity, i.e., the third term (q � 3)
of Eq. (14). Such a fact is visible in Fig. 8: the slope at the origin of
the distance between the effective and linear slopes maps, which is
defined in Eq. (29), is null, but this distance does not equal zero:

GS
el �ϕt ;a��

����Sx�aϕt�
a

−Sxl �ϕt�
����
2

�
����Sy�aϕt�

a
−Syl �ϕt�

����
2

; (29)

GmI
el �ϕt ; a� �

X
4pupils

����mI
		�aϕt�
a

− I		
l �ϕt�

����
2

: (30)

7. APPLICATION TO THE ZERNIKE WFS

A. Tessellation Formalism

This section focuses on the Zernike WFS initially introduced by
Zernike himself [5]. This WFS allows us to illustrate the piston
presence in the tessellation formalism. Indeed, this sensor works
by splitting the incoming energy into two parts thanks to polar
tessellations Ωρ and Ω̄ρ and by creating an optical path difference
between these two contributions. Note that there are no rejection
tip/tilt angles for the Zernike WFS. Hence, we can write

Ωρ:δ; 0; 0 Ω̄ρ:0; 0; 0:

As a consequence, the 2DFT of the Zernike mask with optical
parameters δ and ρ is

F �mZ ��rd � � F �IΩ̄ρ
��rd � � exp

�
2ıπ
λ0

δ

�
F �IΩρ

��rd �; (31)

� δ�rd � �
�
exp

�
2ıπ
λ0

δ

�
− 1

�
ρ

rd
J1�2πρrd �: (32)

Historically, the size of the central mask ρ was calculated in order
to have the same amount of energy in Ωρ and Ω̄ρ, i.e., ρ �
1.06λ0∕D for a circular pupil; the depth δ associated with the
piston was set to create a π∕2 phase gap between the two waves
coming from Ωρ and Ω̄ρ. Nevertheless, the previous set of optical
parameters is not the only one that generates a WFS. ρ provides
the energetic partition between the two parts of the polar tessel-
lation and an exact equality is actually not strictly needed: a cer-
tain leeway exists and allows us to modify some properties of the
sensor. In the same way, recent works by N’Diaye et al. [15] show
that δ may range in the interval �−λ0∕8; 3λ0∕8� and still defines a
WFS. Consequently, as for the pyramid WFS, the historical
Zernike sensor is only a member of a vaster class of sensors gen-
erated by the polar tessellation and the two optical parameters
ρ and δ.

By looking at Eq. (32), it appears that the entrance pupil is
convoluted with the J1 Bessel function. As a consequence, we
define the following operator, which we call the Zernike operator
Zρ, as

Zρ�f � � f ⋆
ρ

rd
J1�2πρrd �:

Thanks to the general definition of the linear intensity I l [see
Eq. (16)], it is possible to get the purely linear behavior of the
ZWFS:

Fig. 8. Distance between the effective and linear meta-intensities
(�, GmI

el ) and the effective and linear slope maps (�, GS
el ) as functions

of the input phase amplitude. The slope of the red line equals the 2-norm
of the quadratic intensity associated with the meta-intensities. The input
phase is the vertical coma, and the considered WFS is the PWFS with an
infinite apex angle.
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I l �ϕt� � 2 sin

�
2π

λ0
δ

�zfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflffl{a

IP�ϕtZρ�IP � − Zρ�IPϕt ��
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{b

: (33)

The spatial variability of the linear intensity I l is coded by the
term b of Eq. (33). One notes that this variability only depends
on the optical parameter ρ, which is the size of the Zernike mask.
The depth of this mask coded by the optical parameter δ allows us
to adjust the global scalar factor a.

The quadratic intensity I q is calculated via its definition in
Eq. (17):

Iq�ϕt� �
�
1 − cos

�
2π

λ0
δ

�	
�2Z2

ρ�ϕt � − 2ϕtZρ�ϕt �

� Zρ�ϕ2
t � � ϕ2

tZρ�IP � − 2Zρ�IP �Zρ�ϕ2
t ��:

Once again, it appears that ρ only influences the spatial variability
of the quadratic intensity, whereas δ adjusts a global scalar factor.

B. Sensitivity, Linearity Range, and SD Factor

From the expression of the linear intensity, we can get the sensi-
tivity associated with the input phase ϕt :

s�ϕt� � 2

���� sin
�
2π

λ0
δ

�����kϕtZρ�IP � − Zρ�IPϕt �k2: (34)

The linearity range is directly related to the inverse of the 2-norm
of the quadratic intensity:

d �ϕt� �
1

1 − cos


2π
λ0
δ
� k2Z2

ρ�ϕt � − 2ϕtZρ�ϕt �

�Zρ�ϕ2
t � � ϕ2

tZρ�IP � − 2Zρ�IP �Zρ�ϕ2
t �k−12 : (35)

1. Depth of the Zernike Mask

The size of the Zernike mask ρ is set at 1.06λ0∕D. We study the
influence of its depth on the sensitivity, the linearity range, and
the SD factor. Equation (34) shows that the sensibility is maxi-
mum for δ � λ0∕4. That corresponds to the historical Zernike
WFS. From δ � 0 to δ � λ0∕2, we then observe, thanks to
Eq. (35), that the linearity range is decreasing. When δ tends

to 0, the linearity range is infinite, but such a configuration cor-
responds to the trivial mask and the sensitivity is then null.
Figure 9 confirms these results. Moreover, the SD factor curve
shows that deep Zernike masks, e.g., 3∕8λ0, allow us to get a sig-
nificant gain in terms of the linearity range without too much
sensitivity loss. Finally, we effectively observe that the shapes
of the curves do not change when δ varies. This parameter only
translates them by the global factors of Eqs. (34) and (35).

2. Size of the Zernike Mask

We set in this paragraph the depth of the Zernike mask at λ0∕4
and study the influence of its size on the performance criteria. We
observe in Fig. 10 that this time, the shapes of curves change with
ρ. This is fully consistent with Eqs. (34) and (35). Moreover, a
larger Zernike mask slightly improves the sensitivity, while the
linearity range decreases. The SD factor approximately stays con-
stant. We conclude this part about the Zernike WFS class by
remarking that the first optical stage of the Roddier and
Roddier coronagraph is also a member of this class.

8. POLYCHROMATIC LIGHT

In this section, we explore the influence of incoming polychro-
matic light on the previous mathematical developments.

A. Polychromatic Intensity

The first step consists of writing all the previous formulas by mak-
ing explicit the dependence on the wavelength λ. The incident
EM field is

ψp�xp; yp; λ� �
ffiffiffiffiffiffiffiffiffi
n�λ�

p
IP�xp; yp� exp

�
2ıπ
λ

Δ�xp; yp�
�
;

with n�λ� defined in such a way that n�λ�dλ is the number
of photons by unit area in the wavelength range
�λ − dλ∕2; λ� dλ∕2�. In other words, n�λ� is the spectrum of
the studied source. The optical path differenceΔ is not dependent
on the wavelength, since we assume that the atmosphere is not
a dispersive medium. If we choose a particular wavelength λ0 as
a reference, it is possible to write the phase of the incoming field as

Fig. 9. Sensitivity, linearity range, and SD factor of the Zernike WFS
with respect to the spatial frequencies. Depth of the Zernike mask δ
equals 1/8 (�), 1/4 (Δ), and 3/8 (�) λ0. The sensitivity is identical for
δ equals 1/8 and 3/8 λ0.

Fig. 10. Sensitivity, linearity range, and SD factor of the Zernike WFS
with respect to the spatial frequencies. Size of the Zernike mask ρ equals
0.5 (�), 1 (Δ), and 1.5 (�) 1.06λ0∕D.
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ϕ � 2π

λ
�Δt � Δr� �

2π

λ0

λ0
λ
�Δt � Δr� ≙

λ0
λ
�ϕt � ϕr�; (36)

where ϕt (resp. ϕr) is the turbulent phase corresponding to the tur-
bulent OPD Δt (resp. reference OPD Δr ) at the wavelength λ0. In
other words, λ0 is the analysis wavelength. Equation (36) also means
that the only impact of polychromatism on the incoming turbulent
phase corresponds in a scale factoring. Polychromatism does not mix
two different turbulent phase modes together. This fact is essential
for the continuation of our study.

The transparency function of the mask does not change, but
we now keep its λ-dependency:

m�f x; f y; λ� � exp

�
2ıπ
λ

OS�f x ; f y; λ�
�
:

The optical shape of the mask depends, a priori, on the wave-
length, since this quantity is the product of the refractive index
nr (which depends on λ for dispersive material) and the geomet-
rical shape of the mask, GS,

OS�f x; f y; λ� � nr�λ�GS�f x ; f y�:
The last source of λ dependency comes from the Fresnel formal-
ism. Indeed, the light propagation itself includes the wavelength,
as we can see in the expression of the EM field in the detector
plane,

ψd �xd ; yd �∝
ZZ

dxpdyp
f 2 ψp�xp − xd ; yp − yd ;λ�

ZZ
df xdf y

λ2
m�f x; f y;λ�exp

�
−
2ıπ
f λ

�xpf x � ypf y �
�
:

Concretely, it means that the right-side integral of this equation
corresponds to a λ-dependent 2DFT of the mask. In other words,
without particular assumptions about the mask, its Fourier
transform depends on the wavelength. The fundamental Eq. (4)
becomes

I λ�ϕt� � jψp�ϕt ; λ�⋆F λ�m�j2:
Under these new assumptions, we can write the polychromatic
intensity on the detector, called I p, as the integral of the mono-
chromatic intensities on the whole spectrum of the light source:

I p�ϕt� �
Z

dλjψp�ϕt ; λ�⋆F λ�m�j2: (37)

B. Substitution Test

The chromatic 2DFT equals

F λ�m��xp; yp� �
ZZ

df xdf y

λ2
m�f x; f y; λ�e−

2ıπ
f λ�xpf x�ypf y �:

By looking at this equation, it appears that the chromatic 2DFT
may be decoupled from the wavelength on the condition that the
substitution

�u; v� �
�
f x

λ
;
f y

λ

�
; (38)

makes the λ dependency disappear. This condition requires in fact
that the transparency function of the mask is a function of only
two variables u and v instead of three: f x , f y, and λ. In terms of
physics, such a condition means that the point-spread functions
for every wavelength always see the same “mask.” In other words,

the optical shape of this mask is invariable by scale change. In
particular, one can note that as soon as a mask does not need
any characteristic length quantity in its transparency function,
the substitution of Eq. (38) is possible.

Under the substitution of Eq. (38) assumption, the 2DFT be-
comes independent of the wavelength. The total polychromatic
intensity [Eq. (37)] may be simplified into

I p�ϕt� �
Z

n�λ�dλ
����IP exp

�
ı
λ0
λ
�ϕt � ϕr�

�
⋆F �m�

����2:
The phase power series of such an intensity becomes

I p�ϕt� �
X∞
q�0

�−ı�q
q!

Z
n�λ�

�
λ0
λ

�
q Xq
k�0

�−1�k
�
q

k

�
ϕk⋆
t ϕ

q−k⋆
t dλ

where ϕk⋆
t ≙



Ipe

2ıπλ0
λ ϕrϕk

t

�
⋆F �m�: (39)

We assume, from now on, that ϕr � 0. As a consequence, the kth
moment does not depend on λ anymore. Subsequently, the phase
power series in Eq. (39) may be simplified into

I p�ϕt� �
X∞
q�0

�−ı�q
q!

Z
n�λ�

�
λ0
λ

�
q
dλ

Xq
k�0

�−1�k
�
q

k

�
ϕk⋆
t ϕ

q−k⋆
t

where ϕk⋆
t ≙ �Ipϕk

t �⋆F �m�: (40)

C. Polychromatic Meta-Intensities

The first terms of the previous equation correspond once again to
the constant, linear, and quadratic terms, I pc , Ipl , and Ipq :

I pc � jIP⋆F �m�j2

I pl �ϕt� �
1

n

�Z
n�λ� λ0

λ
dλ

�
2I��IP⋆F �m���IPϕt⋆F �m���

I pq�ϕt� �
1

n

�Z
n�λ�

�
λ0
λ

�
2

dλ

�
�jIPϕt⋆F �m�j2�

−R��IP⋆F �m���IPϕ2
t⋆F �m����;

where n is the total flux,

n �
Z

n�λ�dλ:

The method used previously to construct a phase-linear quantity
(at least in the small-phase approximation) is once again valid.
The effective polychromatic meta-intensity, called mIp, will be
subsequently defined in the same way as Eqs. (18) and (23), i.e.,

mIp�ϕt� �
Ip�ϕt� − Ip�0�

n
: (41)

Subsequently, it is this time easy to do the link between the poly-
chromatic linear and quadratic intensities to the monochromatic
ones:

Ipl �ϕt� �
1

n

�Z
n�λ� λ0

λ
dλ

�
I l �ϕt�

Ipq�ϕt� �
1

n

�Z
n�λ�

�
λ0
λ

�
2

dλ

�
I q�ϕt�:

It appears thus that under the assumption that the substitution
of Eq. (38) is valid and that the reference phase equals the null
phase, the polychromatic linear and quadratic intensities only dif-
fer from the monochromatic ones by global gain factors, which
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only depend on the spectrum n�λ� and on the reference wave-
length λ0 but not on the incoming phase mode.

In particular, it means that the polychromatism does not in-
duce a change in the spatial structure of the meta-intensities, but
only introduces a global blurring factor. In other words, an inter-
action matrix done with a monochromatic reference source is still
valid for a polychromatic source if such a global factor is taken
into account.

The substitution of Eq. (38) is thus a robust way to define
what is an achromatic sensor. Indeed, if this is not possible,
the factorization in the power series in Eq. (39) is not possible
anymore. Concretely, it means that there is crosstalk between
the phase modes due to the polychromatism of the source.
The interaction matrix will be, subsequently, changed in its spatial
structure.

Finally, one can notice the impact of a non-null reference
phase: a WFS that does not work around the null phase is irre-
mediably chromatic.

D. Sensitivity, Linear Range, and SD Factor

We can finally note that, for an achromatic sensor, the polychro-
matic sensitivity and linearity range (called sp and dp) may easily
be linked to the monochromatic ones:

sp�ϕt� �
1

n

�Z
n�λ� λ0

λ
dλ

�
s�ϕt�

dp�ϕt� � n
�Z

n�λ�
�
λ0
λ

�
2

dλ

�
−1

d �ϕt�:

E. Applications to Classical WFSs

As we have just seen in the previous paragraph, as soon as the
reference phase equals zero, the chromatic behavior of a WFS only
depends on the expression of the transparency function of its
Fourier mask. In this section, we browse the previous examples
of WFSs and study their chromatic behavior in light of the sub-
stitution test defined in Eq. (38).

1. Pyramid WFS Class

Perfect pyramidal mask. We first consider the class of pyramid
WFSs. The general expression of the transparency function of
the associated mask is

mΔ�f x ; f y; λ� � exp

�
2ıπ
λ

nr�λ�θ�jf x j � jf yj�
�
:

There are two cases, depending on whether we consider a disper-
sive pyramid (e.g., a transparent glass pyramid) or a reflective
pyramid (see [12]). In the first case, nr�λ� follows the usual em-
pirical Cauchy’s equation,

nr�λ� � B � C
λ2

�…;

where B and C depend on the nature of the propagation medium.
Note that in this case, it is impossible to make m only a function
of the two variables f x∕λ and f y∕λ; it means that the associated
WFS is not achromatic. Fortunately, a classical solution to solve
this problem exists which consists of using two transparent pyra-
mids attached by their base (see [16]). Such a device allows us, in
substance, to nullify the first λ-dependent term C of the refractive
index. In this way, variable substitution becomes possible, which
makes the WFS achromatic. In the case of a reflective pyramid,

the propagation medium is air, which is not significantly disper-
sive on the visible spectrum. Subsequently, the substitution can be
made and the simplified transparency function is

mΔ�u; v� � exp�2ıπnairθ�juj � jvj��:
These results prove that the reflective pyramid and the two at-
tached pyramids are achromatic sensors. Moreover, the apex angle
θ stays a free parameter. Subsequently, both the classical PWFS
introduced by Ragazonni [1] where the pupil images are com-
pletely separated and the flattened PWFS we proposed in [4]
are achromatic sensors.

Modulation and Chromaticity. We already saw (paragraph 5.B)
that the modulated phase ϕm�s� may be seen as a variable reference
phase. Moreover, the results of paragraph 8.C showed that
a non-null reference phase irremediably induces a structural
dependence of the output meta-intensities regarding the spectrum
of the source. Consequently, the modulated PWFS (and all its
variations) is not an achromatic sensor.

2. Zernike Mask

The transparency function of the mask of the Zernike WFS class
needs, unfortunately, 2 characteristic length quantities: the first
one is the size of the central disk, allowing us to define the
two parts of the polar tessellation. This size is set in order to
set the energy partition in the 2 parts of the tessellation. For a
circular pupil of a diameter D and a reference wavelength λ0,
the size of the pupil equals 1.06λ0∕D. The second characteristic
quantity is the depth of the central disk well. It is set in order to
create an OPD between the two parts of the polar tessellation. In
other words, the optical design of the Zernike mask is optimized
only for one wavelength. Moreover, this mask is manufactured in
a transparent medium, which is, a priori, dispersive as well, but we
do not consider such a chromatic effect for the following study.
Such considerations allow us to write the transparency function as

mZ �f x ; f y; λ� � 1� �e ıπ2 λ0λ − 1�Θ
�
1.06

λ0
D

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2
x � f 2

y

q �
:

It is clearly seen that the substitution of Eq. (38) does not allow us
to cancel the wavelength dependence of the mask. Subsequently,
the Zernike WFS cannot be an achromatic sensor. Nevertheless,
N’Diaye et al. [17] showed that chromaticity does not play a sig-
nificant role in terms of the error budget, making the ZWFS prac-
tically achromatic.

9. CONCLUSIONS

Thanks to the original approach of the Fourier plane tessellation,
we managed to unify all the optical designs based on Fourier fil-
tering. The essential point is to consider any kind of Fourier mask
as a spatial frequency splitter.

From this approach, we showed that the 2D Fourier transform
of the mask plays a significant role all along the mathematical
developments, allowing us, in particular, to efficiently describe
the imaging for any kind of entrance pupils or incoming phases.
A phase power series development of the intensity on the detector
allows us to identify the linear term. In order to extract this one
from the effective signal obtained on the detector, we introduced a
numerical process that may be seen as the simplest way to get a
phase-linear response in the small-phase regime. The quantity ob-
tained after such a calculation has been called the meta-intensity
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mI and is defined in the same way for any kind of Fourier-
based WFSs.

These analytical developments have then allowed us to define
the sensitivity and the linearity ranges of all the WFSs studied
here. They are directly based on the linear and quadratic terms
of the phase power series of the intensity. Moreover, we defined
the SD factor, which quantifies the trade-off between these two
antagonistic performance criteria. Such a factor gave us some
practical ideas to optimize the Fourier masks depending on the
required specifications. In other words, it opens the way to free-
form filtering masks.

We then extended all these results to the modulation. This is
particularly useful when considering unusual modulations, such
as nonuniform or non-tip/tilt modulations.

The last theoretical result was about the effect of a polychro-
matic incoming light on the efficiency of a WFS. We gave a ro-
bust criterion depending only on the transparency function of the
mask in order to characterize the achromatic property of a WFS.

As a second goal for this paper, we applied the theoretical de-
velopments to existing and new sensors. Indeed, the developed
formalism allowed us to unify (and this was its main purpose)
all the Fourier-based WFSs. We showed in particular that the
pyramid WFS and the Zernike WFS may be considered not as
unique designs but more as classes, where optical characteristics
become flexible parameters.

It appeared, for instance, that the flattened PWFS and the
classical PWFS were only two types of the pyramid WFSs class,
where the apex angle is considered as a parameter. An exhaustive
study that explores in great detail all the parameters of the pyra-
mid class, i.e., the apex angle, the number of faces, and the modu-
lation parameters, is conducted in [18].

We also showed that the slope maps usually associated with the
PWFS were directly linked to the general meta-intensities we in-
troduced. Moreover, we showed that the linearity range was im-
proved without significant loss of sensitivity thanks to this slope
maps computation.

Finally, newWFSs have been studied by considering the depth
and the size of the central well of the Zernike WFS as a free
parameter. Moreover, we isolated, analytically, the role played
by each of these two parameters in the response of the sensors
of the ZWFS class.

APPENDIX A: NOTATIONS

2D Fourier Transform: F �f ��μ; ν� �RR
f �x; y�e−2ıπ�xμ�yν�dxdy

Identity transform: I �f ��x; y� � f �x; y�
Symmetric transform: S�f ��x; y� � f �−x; −y�

Hilbert transforms: Hx �f ��x; y� � p:v:f1π
R f �t;y�

x−t dtg-
Hy�f ��x; y� � p:v:f1π

R f �x;t�
y−t dtg-

H2
xy�f ��x; y� �

p:v:f 1
π2
RR f �t;t 0�

�x−t��y−t 0� dtdt
0g

2-Norm: kf k2 � �RR jf �x; y�j2dxdy�1∕2
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