Online Identification of key-parameters for Synthetic-Based Calibration with Pyramid WFS

Cedric Taïssir HERITIER

T. Fusco, S. Oberti, B. Neichel, S.Esposito, P.Y. Madec, M. Kasper, C. Verinaud, J. Paufique, M. Le Louan,

Introduction - AO Calibration

The Future Generation of Telescopes: The Extremely Large Telescopes

Extremely Large Telescope – 39 m diameter Giant Magellan Telescope – 24.5 m diameter Thirty Meter Telescope – 30 m diameter

No External Calibration Source

. . .

- No External Calibration Source
- ~ 5000 Actuators DM

- No External Calibration Source
- ~ 5000 Actuators DM
- DM located inside the telescope

- No External Calibration Source
- ~ 5000 Actuators DM
- DM located inside the telescope
- Pyramid WFS Specifities

- No External Calibration Source
- ~ 5000 Actuators DM
- DM located inside the telescope
- Pyramid WFS Specifities
- Minimize impact on Science

Post Focal AO System

Large Adaptive Telescope

Large Adaptive Telescope

Evolution the DM Actuator grid image as seen by to the WFS.

I - Impact of a Mis-Registration

- \Rightarrow Dramatic impact on the AO Correction \Rightarrow Loss of Performance
- \Rightarrow Loop instability

Monitoring and Compensation of the Mis-Registrations is **necessary**!

I - Impact of a Mis-Registration

- \Rightarrow Dramatic impact on the AO Correction \Rightarrow Loss of Performance
- \Rightarrow Loop instability

Monitoring and Compensation of the Mis-Registrations is **necessary**!

Typically:

Accuracy < 10% of a subaperture (System dependent)

An Invasive Approach - Principle

Principle:

Dithering of a few well selected modes to retrieve the mis-registrations parameters.

How?

- Fast Push-Pull? Temporal and Spatial modulation?
- SNR required? Time allocated?
- Impact on the science?

Wildi et al. 2004, Esposito et al. 2006, Oberti et al. 2006, Pieralli et al. 2008, Pinna et al. 2012, Kellerer et al. 2012

An Invasive Approach - Principle

Principle:

Dithering of a few well selected modes to retrieve the mis-registrations parameters.

How?

- Fast Push-Pull? Temporal and Spatial modulation?
- SNR required? Time allocated?
- Impact on the science?

Wildi et al. 2004, Esposito et al. 2006, Oberti et al. 2006, Pieralli et al. 2008, Pinna et al. 2012, Kellerer et al. 2012

An Invasive Approach - Principle

Principle:

Dithering of a few well selected modes to retrieve the mis-registrations parameters.

How?

- Fast Push-Pull? Temporal and Spatial modulation?
- SNR required? Time allocated?
- Impact on the science?

What Signals?

- Spatial properties of the signals?
- Impact on the science?

An Invasive Approach - Choice of the signals

Identifying the optimal set of modes to **maximize the sensitivity to a given misregistration** and minimize the number of modes required.

 \Rightarrow Principal Component Analysis of the **Sensitivity Matrix**

Ex: 20 by 20 subapertures - Cartesian DM with PWFS:

An Invasive Approach - Application

<u>Application:</u> Dynamical tracking of multiple parameters evolving at the same time 20 Fast push-pull of 3 modes - 20 nm RMS

An Invasive Approach - Application

<u>Application:</u> Dynamical tracking of multiple parameters evolving at the same time 20 Fast push-pull of 3 modes - 20 nm RMS

An Invasive Approach - Choice of the signals

Advantages: Robustness and accuracy of the method!

Drawbacks: Impact on science has to be carefully evaluated

Advantages: Robustness and accuracy of the method!

Drawbacks: Impact on science has to be carefully evaluated

High Contrast? => Non Invasive Approach

Principle:

- I) Estimating an Interaction Matrix using the closed-loop data
- 2) Identification of the Mis-Registrations using this noisy Interaction Matrix

Principle:

- I) Estimating an Interaction Matrix using the closed-loop data
- AO CL Equation

Principle:

- I) Estimating an Interaction Matrix using the closed-loop data
- AO CL Equation

Increments (Linearity + Independence of δc_k and $\delta \phi_k^{turb}$)

$$\delta y_{k} = -M_{WFS} M_{DM\alpha} \delta c_{k} + M_{WFS} \delta \phi_{k}^{turb} + \delta \eta_{k}$$

Principle:

- I) Estimating an Interaction Matrix using the closed-loop data
- AO CL Equation

Increments (Linearity + Independence of δc_k and $\delta \phi_k^{turb}$)

$$\begin{split} \delta y_k &= -M_{WFS}. M_{DM_{\alpha}}. \\ \delta c_k + M_{WFS}. \\ \delta \varphi_k^{turb} + \delta \eta_k \\ \\ D_{\alpha} & \text{Disturbance } \delta z_k \end{split}$$

Principle:

I) Estimating an Interaction Matrix using the closed-loop data

AO – CL Equation

Principle:

I) Estimating an Interaction Matrix using the closed-loop data

AO – CL Equation

$$\delta \mathbf{y}_{\mathbf{k}} = \mathbf{D}_{\alpha} \cdot \mathbf{\delta} \mathbf{c}_{\mathbf{k}} + \mathbf{\delta} \mathbf{z}_{\mathbf{k}}$$

Maximum Likelihood Approach:

Principle:

I) Estimating an Interaction Matrix using the closed-loop data

AO – CL Equation

$$\delta \mathbf{y}_{\mathbf{k}} = \mathbf{D}_{\alpha} \cdot \mathbf{\delta} \mathbf{c}_{\mathbf{k}} + \delta \mathbf{z}_{\mathbf{k}}$$

Maximum Likelihood Approach:

$$\mathbf{D}_{\alpha} = (\mathbf{C}_{\delta \mathbf{y}, \delta \mathbf{c}}) \cdot (\mathbf{C}_{\delta \mathbf{c}, \delta \mathbf{c}})^{+}$$

Hypothesis:

- I. Independence between δc_k and δz_k
- 2. PerfectWFS

Domain of validity? Limitations?

IV.2 - Analysis of the signals

$$\delta \mathbf{y}_{\mathbf{k}} = \mathbf{D}_{\alpha} \cdot \delta \mathbf{c}_{\mathbf{k}} + \delta \mathbf{z}_{\mathbf{k}}$$

Signal of interest $\delta c_k =$ Propagation on the DM of :

- Noise Propagation
- Calibration Error
- Temporal Error
- Aliasing Error
- •

IV.2 - Analysis of the signals

$$\delta \mathbf{y}_{\mathbf{k}} = \mathbf{D}_{\alpha} \cdot \delta \mathbf{c}_{\mathbf{k}} + \delta \mathbf{z}_{\mathbf{k}}$$

Signal of interest $\delta c_k =$ Propagation on the DM of :

- Noise Propagation Acts as a signal of interest!
- Calibration Error
- Temporal Error
- Aliasing Error
- •

IV.2 - Analysis of the signals

$$\delta \mathbf{y}_{\mathbf{k}} = \mathbf{D}_{\alpha} \cdot \delta \mathbf{c}_{\mathbf{k}} + \delta \mathbf{z}_{\mathbf{k}}$$

Signal of interest $\delta c_k =$ Propagation on the DM of :

- Noise Propagation
- Calibration Error
- Temporal Error Correlated to the turbulence impacting the measurement!
- Aliasing Error

Challenging the hypothesis

- I. Independence between δc_k and δz_k ?
 - I. Explore different observing conditions : Frozen Flow and Boiling atmosphere

Frozen Flow

Boiling

For both cases constant wind in the X direction

Challenging the hypothesis

- I. Independence between δc_k and $\delta z_k?$
 - I. Explore different observing conditions : Frozen Flow and Boiling atmosphere
 - 2. Explore different regimes of noise

Limit cases:

High Flux Regime

X Direction

Limit cases:

High Flux Regime

X Direction

Frozen Flow

Boiling

Bias for the shift estimation!

- Depends on the wind speed
- Depends on the wind direction
- Depends on the regime of noise

No bias for the shift estimation!

Application SHWFS

Problem comes from the Temporal Error.. Impact of the bandwidth?

Bias correlated to the bandwidth!

=> Correction of the temporal error!

Application with PWFS

- Same Trends Identified!
- Higher impact of the bias:
- Optical Gains Compensations

Summary:

Limitation of the method in a strong Frozen Flow and High Flux regime

BUT...We have to keep in mind that we considered:

- A pure Frozen Flow (constant wind speed and direction) => not so realistic
- Large Wind-speeds >20 m/s

Conclusions

AO Calibration in the ELT context

 \Rightarrow Pseudo Synthetic models to provide regular updates of the calibration

Invasive approach:

- Robust and behaving as we expect it to be.
- Impact on science

Non Invasive Approach

- NO impact on science
- Limitations in High Flux regime and Pure Frozen Flow => Priors?

Origin of the Bias in High Flux Regime?

Structures in the interaction matrix estimation = replicas of actuators signals!

Origin of the Bias in High Flux Regime?

Structures in the interaction matrix estimation = replicas of actuators signals! When overlapping with signal of interest => Bias the algorithm! <u>Principle</u>: Projection of an Interaction Matrix onto **Sensitivity Matrices** Taylor's Development of the interaction matrix

$$\mathbf{D}_{\boldsymbol{\alpha}} \approx \gamma \left(\mathbf{D}_{\boldsymbol{\alpha}_{0}} + \sum_{i} \alpha_{i} \cdot \boldsymbol{\delta} \mathbf{D}_{\boldsymbol{\alpha}_{0}}(\boldsymbol{\varepsilon}_{i}) \right)$$

 D_{α} = Input Interaction Matrix for mis-registration α

 D_{α_0} = Synthetic Interaction Matrix for mis-registration α_0

Principle: Projection of an Interaction Matrix onto Sensitivity Matrices

Taylor's Development of the interaction matrix

Sensitivity Matrix

$$D_{\alpha} \approx \gamma \left(D_{\alpha_0} + \sum_{i} \alpha_i \cdot \delta D_{\alpha_0}(\varepsilon_i) \right)$$

Scaling Factor Mis-Registration parameter of type *i*

Sensitivity Matrix

$$\boldsymbol{\delta D}_{\boldsymbol{\alpha_0}}(\boldsymbol{\epsilon_i}) = \frac{\boldsymbol{D}_{\boldsymbol{\alpha_0}+\boldsymbol{\epsilon_i}} - \boldsymbol{D}_{\boldsymbol{\alpha_0}-\boldsymbol{\epsilon_i}}}{2\boldsymbol{\epsilon_i}}$$

<u>Principle</u>: Projection of an Interaction Matrix onto **Sensitivity Matrices** Taylor's Development of the interaction matrix

$$\mathbf{D}_{\alpha} \approx \gamma \left(\mathbf{D}_{\alpha_0} + \sum_{i} \alpha_{i} \cdot \boldsymbol{\delta} \mathbf{D}_{\alpha_0}(\varepsilon_{i}) \right)$$

Least Square Minimization:

Iterative Estimation of γ and α (A few iterations required)

 \Rightarrow All the mis-registration parameters identified simultaneously