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Introduction - AO Calibration

Interaction Matrix 𝐃

=

How the DM Surface is 
seen by the WFS

Deformable 

Mirror (DM)

Calibration Source

𝐃 = 𝐌𝐖𝐅𝐒 .𝐌𝐃𝐌

WFS Measurement Model

DM Influence Functions 
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AO Calibration in the ELT Context

The Future Generation of Telescopes:  The Extremely Large Telescopes

Extremely Large Telescope – 39 m diameter

Giant Magellan Telescope – 24.5 m diameter

Thirty Meter Telescope – 30 m diameter 3



AO Calibration in the ELT Context

Deformable 

Mirror (DM)

Calibration Source

• No External Calibration Source

• …
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AO Calibration in the ELT Context

Deformable 

Mirror (DM)

Wave-Front Sensor

(WFS)

Calibration Source

Telescope

Focal Point

~40 m

• No External Calibration Source

• ~ 5000 Actuators DM

• DM located inside the telescope

• …

6



AO Calibration in the ELT Context

Deformable 

Mirror (DM)

Wave-Front Sensor

(WFS)

Calibration Source

Telescope

Focal Point

~40 m

• No External Calibration Source

• ~ 5000 Actuators DM

• DM located inside the telescope

• Pyramid WFS Specifities

• …

7



AO Calibration in the ELT Context

Deformable 

Mirror (DM)

Wave-Front Sensor

(WFS)

Calibration Source

Telescope

Focal Point

• No External Calibration Source

• ~ 5000 Actuators DM

• DM located inside the telescope

• Pyramid WFS Specifities

• Minimize impact on Science
~40 m
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AO Calibration in the ELT Context

Post Focal AO System

Wave-Front 

Sensor

Stable Optical 

Propagation

Deformable 

Mirror

Wave-Front 

Sensor
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AO Calibration in the ELT Context

Large Adaptive Telescope

Wave-Front 

Sensor

Dynamically evolving 

Optical Propagation

Deformable 

Mirror

Wave-Front 

Sensor

10



AO Calibration in the ELT Context

Large Adaptive Telescope

Wave-Front 

Sensor

Dynamically evolving 

Optical Propagation

Deformable 

Mirror

Wave-Front 

Sensor

Mis-Registrations 

Evolution the DM Actuator grid image as seen by to the WFS.

Magnification AnamorphosisShiftsRotation
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I - Impact of a Mis-Registration

 Dramatic impact on the AO Correction

 Loss of Performance

 Loop instability 

Monitoring and Compensation of the 

Mis-Registrations is necessary!
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I - Impact of a Mis-Registration

 Dramatic impact on the AO Correction

 Loss of Performance

 Loop instability 

Monitoring and Compensation of the 

Mis-Registrations is necessary!

Typically: 

Accuracy < 10% of a subaperture

(System dependent)
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Pseudo Synthetic Interaction Matrix

Experimental Signals

Mis-Registration state 𝛼

Synthetic Model

WFS Model

DM Model

Mis-Registration state 𝛼0

Mis-Registration Identification 

Algorithm

𝛼∗
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Pseudo Synthetic Interaction Matrix

Experimental Signals

Mis-Registration state 𝛼

Synthetic Model

WFS Model

DM Model

Mis-Registration state 𝛼0

Mis-Registration Identification 

Algorithm

𝛼∗

End-to-end Simulator (OOMAO)

• Modelling of the DM

• Modelling of the WFS

• Modelling of the mis-registrations 𝛼
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Pseudo Synthetic Interaction Matrix

Experimental Signals

Mis-Registration state 𝛼

Synthetic Model

WFS Model

DM Model

Mis-Registration state 𝛼0

Mis-Registration Identification 

Algorithm

𝛼∗

Projection of an interaction matrix on 

Sensitivity Matrices :

𝛅𝐃𝛂𝟎 εi =
𝐃𝛂𝟎+𝛆𝐢 − 𝐃𝛂𝟎−𝛆𝐢

2εi
𝛼0 = Mis-Registration State

𝜀𝑖 = ‘‘delta’’ mis-registration 16



Pseudo Synthetic Interaction Matrix

Experimental Signals

Mis-Registration state 𝛼

Synthetic Model

WFS Model

DM Model

Mis-Registration state 𝛼0

Mis-Registration Identification 

Algorithm

𝛼∗

Online Acquisition :

• Invasive Approach

• Non Invasive Approach 
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An Invasive Approach - Principle

Principle:

Dithering of a few well selected modes to retrieve the mis-registrations parameters.

How?
• Fast Push-Pull? Temporal and Spatial modulation?

• SNR required? Time allocated?

• Impact on the science?

18
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An Invasive Approach - Principle

Principle:

Dithering of a few well selected modes to retrieve the mis-registrations parameters.

How?
• Fast Push-Pull? Temporal and Spatial modulation?

• SNR required? Time allocated?

• Impact on the science?

What Signals?
• Spatial properties of the signals?

• Impact on the science?
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An Invasive Approach - Choice of the signals

Identifying the optimal set of modes to maximize the sensitivity to a given mis-
registration and minimize the number of modes required.

 Principal Component Analysis of the Sensitivity Matrix

Ex: 20 by 20 subapertures - Cartesian DM with PWFS:

Rotation Shift X Shift Y
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An Invasive Approach - Application

Application: Dynamical tracking of multiple parameters evolving at the same time

20 Fast push-pull of 3 modes - 20 nm RMS 

22

Rotation Shift X Shift Y



An Invasive Approach - Application

Application: Dynamical tracking of multiple parameters evolving at the same time

20 Fast push-pull of 3 modes - 20 nm RMS 

< 0.1 ° accuracy! < 3% of a subaperture accuracy!
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An Invasive Approach - Choice of the signals

Impact on the science path?

Max: 1e-6 Max: 1e-4.6

20 nm10 nm

Diffraction-Limited PSF

(log scale)

PSF

(log scale)

Residual

PSF

(log scale)
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An Invasive Approach

Advantages: Robustness and accuracy of the method!

Drawbacks: Impact on science has to be carefully evaluated
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An Invasive Approach

Advantages: Robustness and accuracy of the method!

Drawbacks: Impact on science has to be carefully evaluated

High Contrast? => Non Invasive Approach
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The Non-Invasive Approach - Principle

Principle: 

1) Estimating an Interaction Matrix using the closed-loop data

2) Identification of the Mis-Registrations using this noisy Interaction Matrix

Bechet et al. (2012), Kolb et al. (2012)
27



The Non-Invasive Approach - Principle

Principle: 

1) Estimating an Interaction Matrix using the closed-loop data

AO – CL Equation

𝐲𝐤 = 𝐌𝐖𝐅𝐒. (−𝐌𝐃𝐌𝛂
. 𝐜𝐤+.𝛟𝐤

𝐭𝐮𝐫𝐛 ) + 𝛈𝐤WFS Measurement

DM Command

Turbulence

Noise

WFS Measurement Model

DM Model
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The Non-Invasive Approach - Principle

Principle: 

1) Estimating an Interaction Matrix using the closed-loop data

AO – CL Equation

𝐲𝐤 = 𝐌𝐖𝐅𝐒. (−𝐌𝐃𝐌𝛂. 𝐜𝐤+.𝛟𝐤
𝐭𝐮𝐫𝐛 ) + 𝛈𝐤

Increments (Linearity + Independence of 𝜹𝐜𝐤 and 𝜹𝛟𝐤
𝐭𝐮𝐫𝐛)

𝛅𝐲𝐤 = −𝐌𝐖𝐅𝐒.𝐌𝐃𝐌𝛂. 𝛅𝐜𝐤+𝐌𝐖𝐅𝐒. 𝛅𝛟𝐤
𝐭𝐮𝐫𝐛 + 𝛅𝛈𝐤
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The Non-Invasive Approach - Principle

Principle: 

1) Estimating an Interaction Matrix using the closed-loop data

AO – CL Equation

𝐲𝐤 = 𝐌𝐖𝐅𝐒. (−𝐌𝐃𝐌𝛂. 𝐜𝐤+.𝛟𝐤
𝐭𝐮𝐫𝐛 ) + 𝛈𝐤

Increments (Linearity + Independence of 𝜹𝐜𝐤 and 𝜹𝛟𝐤
𝐭𝐮𝐫𝐛)

𝛅𝐲𝐤 = −𝐌𝐖𝐅𝐒.𝐌𝐃𝐌𝛂. 𝛅𝐜𝐤+𝐌𝐖𝐅𝐒. 𝛅𝛟𝐤
𝐭𝐮𝐫𝐛 + 𝛅𝛈𝐤

𝐃𝛂 Disturbance 𝛅𝐳𝐤
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The Non-Invasive Approach - Principle

Principle: 

1) Estimating an Interaction Matrix using the closed-loop data

AO – CL Equation

𝛅𝐲𝐤 = 𝐃𝛂. 𝛅𝐜𝐤 + 𝛅𝐳𝐤

DisturbanceSignals of Interest
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The Non-Invasive Approach - Principle

Principle: 

1) Estimating an Interaction Matrix using the closed-loop data

AO – CL Equation

𝛅𝐲𝐤 = 𝐃𝛂. 𝛅𝐜𝐤 + 𝛅𝐳𝐤

Maximum Likelihood Approach: 

𝐃𝛂 = (𝐂𝛅𝐲,𝛅𝐜). 𝐂𝛅𝐜,𝛅𝐜
+

Covariance

Slopes/Commands

Covariance

Commands/Commands
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The Non-Invasive Approach - Principle

Principle: 

1) Estimating an Interaction Matrix using the closed-loop data

AO – CL Equation

𝛅𝐲𝐤 = 𝐃𝛂. 𝛅𝐜𝐤 + 𝛅𝐳𝐤

Maximum Likelihood Approach: 

𝐃𝛂 = (𝐂𝛅𝐲,𝛅𝐜). 𝐂𝛅𝐜,𝛅𝐜
+

Hypothesis:

1. Independence between 𝛅𝐜𝐤 and 𝛅𝐳𝐤

2. Perfect WFS 
Domain of validity? Limitations?
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IV.2 - Analysis of the signals

𝛅𝐲𝐤 = 𝐃𝛂. 𝛅𝐜𝐤 + 𝛅𝐳𝐤

Signal of interest 𝛅𝐜𝐤 =>  Propagation on the DM of :   

• Noise Propagation

• Calibration Error

• Temporal Error

• Aliasing Error

• …
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IV.2 - Analysis of the signals

𝛅𝐲𝐤 = 𝐃𝛂. 𝛅𝐜𝐤 + 𝛅𝐳𝐤

Signal of interest 𝛅𝐜𝐤 =>  Propagation on the DM of :   

• Noise Propagation

• Calibration Error

• Temporal Error

• Aliasing Error

• …

Acts as a signal of interest!
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IV.2 - Analysis of the signals

𝛅𝐲𝐤 = 𝐃𝛂. 𝛅𝐜𝐤 + 𝛅𝐳𝐤

Signal of interest 𝛅𝐜𝐤 =>  Propagation on the DM of :   

• Noise Propagation

• Calibration Error

• Temporal Error

• Aliasing Error

• …

Correlated to the turbulence impacting the measurement!
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Challenging the hypothesis

1. Independence between 𝛅𝐜𝐤 and 𝛅𝐳𝐤?

1. Explore different observing conditions : Frozen Flow and Boiling atmosphere

BoilingFrozen Flow

For both cases constant wind in the X direction
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Challenging the hypothesis

1. Independence between 𝛅𝐜𝐤 and 𝛅𝐳𝐤?

1. Explore different observing conditions : Frozen Flow and Boiling atmosphere

2. Explore different regimes of noise

38



Application SH WFS

Nominal case: Frozen Flow 10 m/s X direction

High Flux Regime

Low Flux Regime
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Application SH WFS

Nominal case: Frozen Flow 10 m/s X direction

High Flux Regime

Low Flux Regime

– X  direction+ X  direction

40



Application SH WFS

Frozen Flow

Limit cases: High Flux Regime X Direction

5 m/s 30 m/s
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Application SH WFS

Boiling

Frozen Flow

Limit cases: High Flux Regime X Direction

5 m/s 30 m/s
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Application SH WFS

Frozen Flow

Bias for the shift estimation!

• Depends on the wind speed

• Depends on the wind direction

• Depends on the regime of noise

Boiling

No bias for the shift estimation!
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Application SH WFS

Problem comes from the Temporal Error..

Impact of the bandwidth?

Bias correlated to the bandwidth!

=> Correction of the temporal error!

High Flux Regime

Low Flux Regime
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Application with PWFS

Optical Gains Compensation

NO Optical Gains Compensation

• Same Trends Identified!

• Higher impact of the bias: 

• Optical Gains Compensations 
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A Non Invasive Approach

Summary: 

Limitation of the method in a strong Frozen Flow and High Flux regime

BUT…We have to keep in mind that we considered:

• A pure Frozen Flow (constant wind speed and direction) => not so realistic

• Large Wind-speeds >20 m/s
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Conclusions 

AO Calibration in the ELT context

Pseudo Synthetic models to provide regular updates of the calibration

Invasive approach: 

• Robust and behaving as we expect it to be. 

• Impact on science 

Non Invasive Approach

• NO impact on science

• Limitations in High Flux regime and Pure Frozen Flow => Priors?
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Application SH WFS

Origin of the Bias in High Flux Regime?

Structures in the interaction matrix estimation = replicas of actuators signals!
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Application SH WFS

Origin of the Bias in High Flux Regime?

Structures in the interaction matrix estimation = replicas of actuators signals!

When overlapping with signal of interest => Bias the algorithm!
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Identification Algorithm

Principle:Projection of an Interaction Matrix onto Sensitivity Matrices

Taylor’s Development of the interaction matrix

𝐃𝛂 ≈ γ 𝐃𝛂𝟎
+෍

i

αi. 𝛅𝐃𝛂𝟎
εi

𝐃𝛂= Input Interaction Matrix for mis-registration 𝛼

𝐃𝛂𝟎= Synthetic Interaction Matrix for mis-registration 𝛼0

50



Identification Algorithm

Principle:Projection of an Interaction Matrix onto Sensitivity Matrices

Taylor’s Development of the interaction matrix

Sensitivity Matrix

𝐃𝛂 ≈ γ 𝐃𝛂𝟎
+෍

i

αi. 𝛅𝐃𝛂𝟎
εi

Scaling Factor Mis-Registration parameter of type 𝑖

Sensitivity Matrix

𝛅𝐃𝛂𝟎
εi =

𝐃𝛂𝟎+𝛆𝐢
−𝐃𝛂𝟎−𝛆𝐢

2εi 51



Identification Algorithm

Principle:Projection of an Interaction Matrix onto Sensitivity Matrices

Taylor’s Development of the interaction matrix

𝐃𝛂 ≈ γ 𝐃𝛂𝟎
+෍

i

αi. 𝛅𝐃𝛂𝟎
εi

Least Square Minimization: 

Iterative Estimation of 𝛾 and 𝜶 (A few iterations required)

All the mis-registration parameters identified simultaneously
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