The dissertation defense will take place on october 7th 2019, at 3 o’clock in the conference room of the Meudon site ( Building 9 ).
Title :
« Analyse et mise en œuvre de l’analyseur pyramide pour l’optique adaptative à très hauts ordres des ELT »
Theses directors :
Gérard Rousset and Éric Gendron
Résumé
Les années 2020 vont voir la mise en route des extrêmement grands télescopes (ELT), et avec eux une révolution dans l’astronomie optique. Ces télescopes, de diamètres de 24 à 39 mètres, offriront à la communauté scientifique une qualité d’imagerie d’un ordre de grandeur supérieure aux meilleurs observatoires actuels. Néanmoins, les télescopes au sol sont naturellement limités par la turbulence atmosphérique : de la résolution théorique de l’ELT de quelques milli-arcsecondes, les taches image sont brouillées jusqu’à atteindre environ une seconde d’arc de largeur.
L’optique adaptative (OA) se propose de compenser en temps réel l’effet de la turbulence atmosphérique, mesurant cette dernière sur des étoiles guides et agissant sur le front d’onde à l’aide de miroirs déformables. Elle est absolument indispensable pour garantir la performance scientifique de tous les grands télescopes terrestres. L’OA reste limitée en terme de couverture de ciel, et il est nécessaire de pouvoir l’asservir sur les étoiles les plus faibles possibles ; ceci promeut le développement d’analyseurs de surface d’onde toujours plus sensibles, dont l’analyseur pyramide (PWFS), qui profite aussi de détecteurs disponibles plus efficaces. Ainsi les étoiles plus faibles, jusqu’à une à trois magnitudes supplémentaires, peuvent encore guider l’OA.
Le PWFS reste une technologie en cours de maturation, et cette thèse s’inscrit parmi les recherches conduites pour amener ce senseur jusqu’aux ELT malgré ses limites : défauts d’usinage et d’alignement ; et un comportement non-linéaire. Ce dernier provoque d’importantes baisses de performance en conditions de mauvais seeing.
D’une part, cette thèse présente la mise en œuvre sur banc d’optique d’un démonstrateur d’OA à l’échelle des ELT : caractérisations et étalonnages des composants spécifiques au PWFS à haute résolution, jusqu’à la mise en œuvre d’une boucle fermée complète sur un télescope simulé de 18 mètres de diamètre.
D’autre part, l’essentiel de ces travaux portent sur la conception d’algorithmes de contrôle et de lois de commande, théoriquement, en simulation, et sur banc, afin d’exploiter au maximum les capacités du PWFS. On propose une analyse des défauts du PWFS, et une modification du contrôle qui permet de relaxer fortement les contraintes de fabrication et de généraliser l’approche à d’autres senseurs, comme le PWFS à 3 faces. Pour ces PWFS, on met en place une étude systématique des non-linéarités, qui permet de définir une méthode de compensation au premier ordre en fonction des conditions turbulentes, et respectant les contraintes opérationnelles.
Ces travaux aboutissent finalement à la conception d’un algorithme d’asservissement de second niveau, qui permet d’optimiser les paramètres du contrôleur de l’OA en temps réel, à partir de la seule télémétrie existante. Quelles que soient les conditions d’observation, il devient possible d’ajuster la loi de commande pour obtenir un contrôle optimisé à travers le PWFS, sans a priori et sans intervention aucune.